Telegram Group & Telegram Channel
🔥 Холивар: Jupyter Notebook — «мертв» или «живее всех живых»?

С каждым годом всё больше говорят, что Jupyter — «игрушка для новичков», «ад для reproducibility», «debug невозможен», и ему нет места в продакшне. Но с другой стороны — это удобство, интерактивность и быстрое прототипирование.

😡 Одна из проблем, с которой сталкиваются многие — это слияние ноутбуков и git-конфликты, которые могут превращать работу в настоящий кошмар. Если вам это знакомо, значит, вы просто ещё не попробовали nbdime.

Это набор утилит, которые делают сравнение и слияние ноутбуков человеческим:
nbdiff — сравнение ноутбуков прямо в терминале
nbdiff-web — визуальное сравнение с рендером ячеек
nbmerge — трёхсторонний merge с автоматическим разрешением конфликтов
nbmerge-web — тот же merge, но в браузере
nbshow — удобный просмотр ноутбука в консоли

📌 Если до этого вы просто коммитили .ipynb «как получится» — попробуйте, это может изменить ваше мнение о Jupyter.

А теперь по-честному: используете ли Jupyter в 2025?
Давайте обсужим в комментариях! ⤵️
Инструкция о том, как оставить комментарий: https://www.tg-me.com/ru/Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение/com.dsproglib/6244

❤️ — Без Jupyter не обойтись, он мой главный инструмент
👍 — Ушёл на другие решения, Jupyter — это прошлый век
🤔 — Не могу выбрать, использую и Jupyter, и другие инструменты

Библиотека дата-сайентиста #междусобойчик
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6395
Create:
Last Update:

🔥 Холивар: Jupyter Notebook — «мертв» или «живее всех живых»?

С каждым годом всё больше говорят, что Jupyter — «игрушка для новичков», «ад для reproducibility», «debug невозможен», и ему нет места в продакшне. Но с другой стороны — это удобство, интерактивность и быстрое прототипирование.

😡 Одна из проблем, с которой сталкиваются многие — это слияние ноутбуков и git-конфликты, которые могут превращать работу в настоящий кошмар. Если вам это знакомо, значит, вы просто ещё не попробовали nbdime.

Это набор утилит, которые делают сравнение и слияние ноутбуков человеческим:
nbdiff — сравнение ноутбуков прямо в терминале
nbdiff-web — визуальное сравнение с рендером ячеек
nbmerge — трёхсторонний merge с автоматическим разрешением конфликтов
nbmerge-web — тот же merge, но в браузере
nbshow — удобный просмотр ноутбука в консоли

📌 Если до этого вы просто коммитили .ipynb «как получится» — попробуйте, это может изменить ваше мнение о Jupyter.

А теперь по-честному: используете ли Jupyter в 2025?
Давайте обсужим в комментариях! ⤵️
Инструкция о том, как оставить комментарий: https://www.tg-me.com/ru/Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение/com.dsproglib/6244

❤️ — Без Jupyter не обойтись, он мой главный инструмент
👍 — Ушёл на другие решения, Jupyter — это прошлый век
🤔 — Не могу выбрать, использую и Jupyter, и другие инструменты

Библиотека дата-сайентиста #междусобойчик

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6395

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.

To pay the bills, Mr. Durov is issuing investors $1 billion to $1.5 billion of company debt, with the promise of discounted equity if the company eventually goes public, the people briefed on the plans said. He has also announced plans to start selling ads in public Telegram channels as soon as later this year, as well as offering other premium services for businesses and users.

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from ru


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA